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Abstract

Based on the structural and experimental studies of more than 300 insect species from different
lineages, we have developed and characterized a bioinspired polymer material with the ability
of multiple glue-free bonding and debonding. The material surface is covered with a pattern of
microstructures, which resembles the geometry of tenent hairs previously described from the
feet of flies, beetles, earwigs and other insects. The tape with such a microstructure pattern
demonstrates at least two times higher pull-off force per unit apparent contact area compared
to the flat polymer. Additionally, the tape is less sensitive to contamination by dust particles
than a commercially available pressure-sensitive adhesive tape. Even if the ‘insect tape’ is
contaminated, it can be washed with a soap solution in water, in order to completely recover its
adhesive properties. We have successfully applied the tape to the 120 g wall-climbing robot
Mini-Whegs™. Furthermore, the tape can be used for multiple adhering of objects to glass
surfaces or as a protective tape for sensitive glass surfaces of optical quality. Another area of
potential applications is gripping and manipulation of objects with smooth surfaces.

(Some figures in this article are in colour only in the electronic version)

Walking on the ceiling

Among few other animal groups, insects possess a fascinating
ability to walk on smooth vertical surfaces and even on
ceilings. Such an ability is robust, fault tolerant and resistant
to contamination. Insects can stick well to both hydrophobic
and hydrophilic surfaces and detach in a very fast manner. In
addition, there is a huge diversity of insect species specialized
to particular species of plants. These observations suggest
that attachment devices of insects can serve as a model for
the development of artificial adhesive systems with similar
functional properties.

The very first reports, which described structures
responsible for the adherence and provided ideas about
possible mechanisms of attachment, are known from the
nineteenth century.  Different hypotheses, ranging from
microsuckers to the action of electrostatic forces, have
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been proposed. Tuffen West in 1862 mentioned that the
structure and action of the fly’s foot have been so frequently
treated of, and are so generally considered to be fully
understood, that it may appear, at the first glance, as if
nothing further could be done with so hackneyed a subject
(West 1862). This statement was of course rather premature,
because the use of electron microscopy, micro- and nano-
Newton range sensitive force transducers, recent developments
in the adhesion theory all have contributed immensely to
our understanding of insect adhesive mechanisms. Also,
comparative accounts on hexapod attachment structures and
a subsequent terminology (De Meijere 1901, Holway 1935,
Dashman 1953) were important sources of comparative
information for guiding further experiments on functional
properties.  From the biomimetics’ point of view, the
comparative approach in studies of biological adhesion also
helped to extract information on essential features of biological

S117


http://dx.doi.org/10.1088/1748-3182/2/4/S01
mailto:s.gorb@mf.mpg.de
http://stacks.iop.org/bb/2/S117

S N Gorb et al

HAIRY SMOOTH

(B)
<4— distal

Figure 1. Diagram of the action of hairy (A, B) and smooth (C, D)
pad attachment systems on smooth (A, C) and structured (B, D)
substrata (Gorb 2001). Both systems are able to adapt to the surface
profile.

systems that can be transferred into artificial systems. Of
course, from one million of insect species recently known to
science, only a few adhesive systems were carefully studied
microscopically and only few selected model species have
been examined experimentally.

To date, both the morphological and ultrastructural bases
of the insect’s ability to walk on vertical surfaces have
been studied in detail only in representatives of selected
taxa, including Orthoptera, Thysanoptera, Heteroptera,
Auchenorrhyncha, Dermaptera, Strepsiptera, Hymenoptera,
Diptera and Coleoptera (see Gorb (2001) for a review).
The comparative data show that the evolution of attachment
mechanisms in insects has developed along two distinctly
different mechanisms: smooth pads and hairy (setose, fibrillar)
surfaces (Beutel and Gorb 2001, 2006).

Two solutions: smooth and hairy pads

Due to the flexibility of the material of the attachment pads
or fine surface structures, both mechanisms can maximize
the possible contact area with the wide range of substrate
profiles (figure 1). These highly specialized structures are not
restricted to one particular area of the leg. They may be
located on different parts, such as claws, derivatives of the
pretarsus, tarsal apex, tarsomeres or tibia (figure 2). A recent
phylogenetic analysis has shown that both types of attachment
structures have evolved several times independently in the
evolutionary history of insects (Beutel and Gorb 2001, 2006).

Smooth pads consist of a fibrous material with a specific
inner structure. For example, in some orthopterans, tiny
filaments are located just under the epicuticle of euplantulae.
In grasshoppers Tettigonia viridissima, the exocuticle is 45—
50 pm thick and consists of the primary filaments (Kendall
1970, Henning 1974), oriented at some angle to the surface
(Gorb et al 2000). Such a material structure contributes to very
specific material properties (soft in compression and strong in
tension), which are responsible for the ability of the material
to replicate a surface profile. Some functional principles of
smooth pads (adaptability, viscoelasticity, pressure sensitivity)
are similar to those known from industrial pressure sensitive
adhesion. Hairy attachment pads employed few other features,
such as flaw tolerance, lower sensitivity to contamination and
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Figure 2. Diversity of the leg attachment devices (colored areas) in
hexapods (Gorb and Beutel 2001). The blue color indicates hairy
systems and the olive color indicates smooth systems. A: arolium,
B: pulvilli, C: empodial pulvillus (ep), D: hairy adhesive soles of
tarsomeres, E: eversible pretarsal bladder, F: eversible structure
between the tibia and tarsus, G: fossula spongiosa, H: euplantulae
(eu) and claw pad (cp), I: tarsal thorns transformed into adhesive
structures (th), claw pad (cp) (both smooth) and J: adhesive claw
setae.

Figure 3. An example of the hairy attachment system. Tarsus (B) of
the chrysomelid beetle Gastrophysa viridula (A) attached to the
smooth surface (Gorb 2005) (colored scanning electron microscopy
picture is the courtesy of Juergen Berger, MPI for Developmental
Biology, Tuebingen, Germany).

roughness, which make them especially interesting from the
biomimetic point of view.

Hairy attachment systems are typical for evolutionary
younger and successful insect groups, such as Coleoptera
(figure 3) and Diptera, and have a huge diversity of forms
and ecological niches. This fact may indicate that such
a design of adhesive surfaces must have an advantage for
adhesion enhancement not only in biological systems, but also
in artificial surfaces with similar geometry. There are several
geometrical effects, such as multiple contact formation, high



Insects did it first: a micropatterned adhesive tape for robotic applications

10000

”E 3

g’ 1000 *dr}- adhesion A \\.7

= P A

E * wet adhesion

Z 100

v

2

QL

[a]

.-

£ 10

2

£

[
14 . . . . .
0.0001 0.001 0.01 0.1 1 10 100

Body Mass [g]

Figure 4. Dependence of the finite hair density of the attachment
pads on the body mass in hairy pad systems of representatives from
diverse animal groups. 1, 2, 4, 5: flies; 3: beetle; 6: bug; 7: spider;
8: gekkonid lizards. Adapted from Scherge and Gorb (2001). The
systems located above the blue line rely on van der Waals forces
(dry adhesion), whereas the systems below the line rely mostly on
capillary and viscous forces (wet adhesion).

aspect ratio of single contact structures, peeling prevention
using spatula-like tips of single contact elements that are
responsible for the generation of a strong pull-off force in
such attachment devices. These effects found in attachment
devices of insects are an important source of information for
further development of biomimetic patterned adhesives. The
theoretical background pertaining to these physical effects
has been intensively theoretically discussed in several recent
publications (Arzt ef al 2003, Persson 2003, Persson and Gorb
2003, Chung and Chaudhury 2005, Gao et al 2005).

We have previously shown that the density of hairs
strongly increases with increasing body weight (Scherge and
Gorb 2001) (figure 4). This relationship holds because animals
cannot increase the area of the attachment devices proportional
to the body weight due to the different scaling rules for
mass and surface area (Gorb and Gorb 2004). Therefore,
the increase of the attachment strength in hairy systems is
realized by increasing the number of single contact points, i.e.
by increasing the hair density. We have explained this general
trend by applying the Johnson—Kendall-Roberts (JKR) contact
theory (Johnson et al 1971), according to which splitting up
the contact into finer sub-contacts should be the mechanism
increasing adhesion (Arzt et al 2003). However, this trend is
presumably different within each single lineage of organisms
(Gorb et al 2001). The fundamental importance of contact
splitting for adhesion on smooth and rough substrata has been
explained by a very small effective elastic modulus of the
array of hairs (Persson 2003). From the scaling analysis,
we may suggest that animal lineages relying on the dry
adhesion (lizards, spiders) possess much higher density of
terminal contact elements compared to systems using the wet
adhesive mechanism (insects). Since these effects are based
on fundamental physical principles and mostly related to the
geometry of the structure, they must also hold for artificial
surfaces with similar geometry.

Figure 5. Patterned insect inspired polyvinylsiloxane surface.

A: single structures are distributed on the surface according to the
hexagonal pattern, in order to reach the highest packaging degree of
single pillars (above aspect, SEM image). B: white-light
interferometer image of single pillar head demonstrates an almost
flat shape of the contacting surface. C: side aspect of the pillar array.
D-F: behavior of structured PVS surfaces in contact with the glass
surface (SEM images). The black arrowhead shows a dust particle
in contact. Adapted from Gorb et al (2007).

Protuberances on the hairy pads of Coleoptera,
Dermaptera and Diptera belong to different types.
Representatives of the first two lineages have socketed setae
on their pads. Setae range in length from a few micrometers
to several millimeters. Dipteran outgrowths are acanthae:
single sclerotized protuberances originating from a single
cell (Richards and Richards 1979). Ultrastructural features
of adhesive hairs have been previously reported for flies
(Bauchhenss 1979, Gorb 1998): the acanthae are hollow
inside, and some of them contain pores under the terminal
plate. Such pores, presumably, deliver an adhesive secretion
directly in the contact area. Pore canals at the base of the
shaft may additionally transport secretions to the surface.
The membranous cuticle of hairy pads is a fibrous composite
material with loosely distributed fibers. In coleopterans, the
hair bases are embedded in this material, which provides
flexibility to the supporting material and helps the pad to adapt
to a variety of surface profiles (Gorb 2001).

‘Dry’ versus ‘wet’ adhesion

Hairy attachment pads of reduviid bugs (Edwards and
Tarkanian 1970), flies (Bauchhenss 1979, Walker et al 1985)
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and beetles (Ishii 1987, Kosaki and Yamaoka 1996, Eisner and
Aneshansley 2000) secrete fluid into the contact area. Such
a secretion contains non-volatile, lipid-like substances, but in
some species it is two-phasic emulsion presumably containing
water-soluble and lipid-soluble fractions (Gorb 2001). Hairy
attachment systems of the gekkonid lizards and spiders do not
produce fluids. In these animals, van der Waals interactions
are mainly responsible for the generation of strong attractive
forces (Autumn er al 2000); however, an adsorbed water
layer on the surface of solids under ambient conditions can
additionally contribute to adhesion in such a ‘dry’ adhesive
system (Homann 1957, Huber et al 2005).

In the case of insects, different basic physical forces
contribute to the overall adhesion. Attachment was impaired
when hairy pads of the bug Rhodnius prolixus were treated with
organic solvents (Edwards and Tarkanian 1970). Experiments
with beetles have strongly suggested that cohesive forces,
surface tension and molecular adhesion, mediated by pad
secretion, may be involved in the mechanism of attachment
(Stork 1980a).  Recently, multiple local force—volume
measurements were carried out on individual terminal plates
of the setae of the fly Calliphora vicina by application of
atomic force microscopy (Langer et al 2004). Local adhesion
is about two times stronger in the center of the terminal
plate than on its border. Adhesion strongly decreases as
the volume of the secretion decreases, indicating that a layer
of pad secretion, covering the terminal plates, is crucial for
generation of the strong attractive force. These data provide
the direct evidence that, beside van der Waals and Coulomb
forces, attractive capillary forces mediated by the pad secretion
are a critical factor in the fly’s attachment mechanism. One
may speculate that the combination of different physical
mechanisms is important to generate sufficient adhesion
despite variation in the physico-chemical properties of the
surface (hydrophobic, hydrophilic), surface profile (rough,
smooth) and environmental condition (dry, wet). However,
we lack experimental data showing which specific conditions
require certain adhesion mechanisms.

Biomimetic applications

There are few artificial surfaces previously described in the
literature that were claimed to improve pull-off forces in
contact with the flat surface. These materials have been
produced using different micro- and nanofabrication methods
ranging from laser technology, carbon nanotube packaging to
various lithography techniques (Geim et al 2003, Peressadko
and Gorb 2004a, Northen and Turner 2005, Yurdumakan et al
2005, Majidi et al 2005). Some of these materials do
not demonstrate an improvement of adhesion measured in a
flat-on-flat scheme. These materials were strongly limited in
the patterned area or/and in the number of adhesion cycles,
despite increases in the pull-off forces achieved by the surface
patterning. The overall patterned area is usually restricted
to few square centimeters, and the increased adhesion occurs
only for a few cycles. Recently, we reported on the large-
scale bioinspired silicone surface with the overall area in the
range of 500 cm?. The microstructures were inspired by those
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Figure 6. Results of the peeling test. A: diagram of the peeling
experiment, B: normalized equilibrium force F/b versus peeling
angle ® obtained for the flat and structured surfaces. The dashed
lines indicate fit corresponding to Kendall’s model of peeling
(Kendall 1975). From Daltorio et al (2005b).

found in male beetles from the Chrysomelidae family (Stork
1980b, Pelletier and Smilowitz 1987, Gorb 2001). The pad
surface, responsible for this effect, consists of a pattern of
hairs (fibers, pillars) with broad flattened tips and a narrowed
flexible region just below the flattened tip. These features, as
well as a hexagonal distribution pattern of pillars, responsible
for the high packing density (Ball 2001) were implemented
in the design of the patterned polymer tape (Gorb et al 2007)
(figure 5).

We used a two-component dental wax (polyvinyl-
siloxane—PVS, President light body, Coltene, Switzerland)
to obtain negative casts from the template surface at
room temperature (Gorb er al 2007). The fluid PVS
was spread over the template surface located on the stiff
polished surface (glass, metal, polymer) and covered with
the flat stiff material. After 10 min of polymerization, the
casts were removed from the template surface. Young’s
modulus of the polymerized material ranges from 2.5 to
3.0 MPa (Peressadko and Gorb 2004a).

The adhesive properties of the newly developed
micropatterned tape were characterized using a variety of
measurement techniques and compared with those of the flat
tape made of the same polymer. Compared to a flat PVS tape,
the microstructure patterned tape demonstrated considerably
higher adhesion in a peeling test (Daltorio et al 2005b)
(figure 6) and higher pull-off force per unit apparent contact
area in measurements according to the flat-to-flat scheme
(Varenberg et al 2006) (figure 7). An excellent performance
of the patterned polymer tape with a similar pillar shape
has also been demonstrated elsewhere (Kim and Sitti 2006).
The structured tape is less sensitive to contamination by dust
particles than the flat tape or a regular scotch tape (figure 8).
After being contaminated, the structured tape can recover its
initial adhesive properties completely when washed with an
aqueous soap solution.

Why does surface patterning influences adhesion?

Multiple mechanisms are responsible for adhesion
enhancement in surfaces patterned in a specific
(bioinspired) way. The most fundamental explanation is that
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Figure 7. Results of the adhesion test of two different PVS samples
according to the flat-on-flat scheme. Tenacity represents adhesion
normalized to the real contact areas between the polymer sample
and glass. The insets demonstrate an optical image of the real
contact area of polymer samples tested. Based on data from Gorb
et al (2007).
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Figure 8. Change of the tape performance depending on the degree
of contamination (five tapes of each type were tested). PVS tape,
biologically inspired microstructured PVS tape. PSA tape, tape
coated with pressure-sensitive adhesive (Scotch™ tape). Initial
state indicates the performance of fresh clean tape on the clean glass
surface. 180 cycles and 270 cycles show tape performance after 180
and 270 adhesive cycles on an unclean glass window, respectively.
After washing shows forces measured on both tapes after washing in
a light soap solution of deionized water.

the pull-off force is proportional to the contact perimeter
between two bodies (Varenberg et al 2006). Thus, an increase
of density of terminal contact elements in biological systems,
discussed above, increases adhesion. In fact, patterns of
smaller structures with higher density produce a larger contact
perimeter at the same, or even smaller, contact area compared
to larger structures, and therefore adhere better (compare
data on two patterns made of the same material (Peressadko
and Gorb 2004a, Varenberg et al 2006, Gorb et al 2007).
Interestingly, this effect holds for patterns with pillars, as well
as for patterns with dimples (Varenberg et al 2006). Increased
adhesion takes place only if the amount of elastic energy
stored during contact formation is minimized. Higher loads
are required to bring elements into contact with a surface,
if the surface structures vary in height, and some of this

energy will be elastically stored in the deformed structures.
This energy will work against adhesion in contact, explaining
why only patterned surfaces composed of structures of equal
heights can build contact with minimal elastic energy stored
and maximum adhesion force. The same principle explains
why patterns with a stochastic distribution of contact element
heights usually reduce adhesion (Peressadko and Gorb
2004b), as in the case of plant surfaces covered by crystalline
waxes (Gorb and Gorb 2002, 2006).

Enhancement of contact formation and contact
tolerance

The majority of other effects responsible for stronger adhesion
of patterned surfaces are related to the enhancement of the
contact formation. Lower surface rigidity of structured
samples provides a higher adaptability to the substrate profile.
The presence of several hierarchical levels of structures
in biological systems may presumably increase this effect,
especially on natural surfaces with fractal profiles, where
different roughness wavelengths are superimposed. The
adaptability of the fibrillar surface can be increased by
making single fibers taller, thinner and softer, but all these
three approaches lead to fiber condensation (lateral collaps,
conglutination), which results in adhesion decrease (Jagota and
Bennison 2002, Spolenak et al 2005b). Hierarchical design is
the solution that optimizes contact formation with the minimal
degree of fiber condensation. Whereas in insects there is only
one hierarchical level of outgrowths on the attachment organ,
a second level of outgrowths is present in spiders (Gorb 2001).
Even more levels have been reported for geckos (Hiller 1968,
Autumn et al 2000, Huber et al 2005a, 2005b, Rizzo et al
2006). A flat sample is able to build real contact only at the
tips of substrate irregularities and, therefore, generates only
rather low total contact area.

A very small effective elastic modulus of the fiber array is
of fundamental importance for adhesion on smooth and rough
substrates. During pull-off, the fibers may elongate many
micrometers before the force in the fiber is high enough to
break the bond to the substrate. Since the spring constant,
associated with a long (curved) fiber, is very small, the
displacement may be very large leading to a very large effective
surface energy. Therefore, it was previously suggested that
strong adhesion may result from ‘long bonds’ rather than from
‘strong bonds’ (Persson 2003).

Effects of crack propagation prevention

Another functional advantage of patterned adhesion systems
is the prevention of crack propagation. In a multicontact
system, the crack will be stopped at the level of a single contact
element, and the new crack has to be formed at each subcontact
during detachment. Formation of new cracks requires a higher
amount of energy than during crack propagation in flat-to-flat
contact. Therefore, contact breakage of a patterned tape affects
higher energy dissipation (Kendall 2001). This behavior is
analogous to the fracture mechanics of solids: cracks propagate
easier in a uniform material compared with the composites
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(Gao et al 2003). Crack propagation behavior on the patterned
adhesive films leads to a significant enhancement of fracture
energy (Chung and Chaudhury 2005). In addition to this effect,
a crack can be stopped at the level of each single outgrowth in
the material we described above, because of the lip-like rim at
the tip of each pillar (Gorb ef al 2007).

Role of mushroom-like tips and narrowing below the
terminal plate

An additional functional principle is related to the spatula- or
mushroom-shaped tips of the setae, which are responsible for
the proper contact formation with the substrate due to the low
bending stiffness of the plates without or with a minimum of a
normal load (Persson and Gorb 2003). While sliding over the
surface, thin plate-like spatulae of insects, spiders or geckoes
may easily make contact with the surface by adapting to the
surface profile and replicating surface irregularities of a certain
length scale. Additionally, such thin plate-like structures
provide higher adaptability to an uneven surface profile. In
the biomimetic material described here, the thin lip-like rim of
the pillar tip is able to replicate surface irregularities of a certain
length scale and, in combination with a narrowed flexible area
below the tip, may adapt to the local slope of the substrate
(Peressadko and Gorb 2004b). Also, the combination of the
rim and narrowing below the rim increases contact tolerance
against external disturbances. This material demonstrates not
only an excellent adhesion in the flat-to-flat adhesion test, but
also rather high tolerance against crack propagation in the
peeling test.

Functional hierarchy of the structured sample

As we have described, the patterned material presented here
has several structural and functional hierarchical levels that
together account for its adhesive properties. The first level is
the thin backing responsible for tape adaptability to the surface
unevenness. The thickness, and therefore bending stiffness, of
the backing has to be set to the lowest possible degree (Geim
et al 2003). The second level is represented by pillars, which
provide adaptability to surface features at the level of dozens of
micrometers. The third level is the flexible narrowing aiding
in adjustment of the terminal plate to the local substrate slope.
Finally, the thin rim or lip is capable of replication of roughness
and dust particles at the level of single micrometers. A certain
degree of redundancy of a number of hierarchical levels makes
the tape more robust on the non-ideal profile of the real surface.

Resistance to contamination

The first experimental evidence on contamination reduction
in biological hairy adhesive systems recently has been done
for the gecko system (Hansen and Autumn 2005). This effect
was explained by better adhesion of contaminating particles to
the substrate than to gecko setae, because of a larger contact
between the particle and substrate than between the particle
and gecko spatulae. Similar effects are probably applicable
to the patterned polymer surface studied here. Another effect
reducing the contamination of an adhesive patterned surface
is sinking dust particles into the gaps between pillars (Gorb
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Figure 9. Mini-Whegs™ 7 on vertical glass with office tape feet
(left) and with microstructured polymer feet and 25 cm long tail (tail
not shown) (right). From Daltorio et al (2005b).

et al 2007). However, another important property of the
patterned tape is a stronger adhesion even at a relatively
strong degree of contamination. This effect relies on a higher
adaptability of a flexible rim of each pillar, even if the contact
formation of single pillars is hampered due to little dust
particles. Adaptability of lip-like margins of terminal elements
provides an additional tolerance to contamination by small dust
particles. Pressure-sensitive adhesives fail much faster after a
number of adhesive cycles, if compared to the patterned PVS
tape (figure 8). Pressure-sensitive adhesives fail completely
after washing, whereas the PVS tape recovers completely.

Robotic applications

Robots that could climb smooth and complex inclined terrains
like insects and lizards would have many applications such
as exploration, inspection or cleaning (Menon et al 2004,
Sangbae et al 2005). The problems of fault tolerance, robust
adhesion to different surfaces, resistance to contamination
are all design constraints that similarly affect biological and
engineered systems. Wall-walking robots are being developed
using new adhesives inspired by insect attachment mechanisms
mentioned above (Daltorio et al 2005a, 2005b) (figure 9).

Observations of insects have inspired the kinematics
of the legs in the glass-wall-climbing robot. Flies make
initial contact with the entire broad, flexible attachment organ
(pulvillus) (Niederegger and Gorb 2003). A slight shear
component is present in the movement, which provides a
preload to the surface of the attachment device. Similar
shearing motion has been previously described as a part of
the attachment mechanism of a single gecko seta (Autumn
et al 2000). Minimal force expenditure during detachment
is also important.  Disconnecting the entire attachment
organ at once requires overcoming a strong adhesive force,
which is energetically disadvantageous. This principle of
contact formation with the entire pad surface and peeling-
like detachment has been applied here to the design of a robot
with climbing ability (figure 9(left)).

Mini-Whegs™ are a series of small robots that use a
single motor to drive their multi-spoke wheel-leg appendages
for locomotion (Morrey et al 2003). The spokes allow Mini-
Whegs™ to climb over larger obstacles than a vehicle with
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similarly sized wheels. We previously developed a Mini-
Whegs™ that can be used to test new bio-inspired adhesive
technologies for wall climbing (Daltorio et al 2005a). Mini-
Whegs™ 7 (5.4 cm by 8.9 cm, 87 g) is power autonomous,
radio controlled and has a total of four wheel legs, each with
four spokes. The feet are bonded to contact areas on the ends of
the spokes and the flexibility of the feet acts as a hinge between
the feet and spokes. The feet contact the substrate, bend as the
hub turns, peel off the substrate gradually and spring back
to their initial position for the next contact. We previously
reported that this robot can climb glass walls and ceilings using
standard pressure-sensitive adhesives (Daltorio et al 2005a).
Later, we demonstrated results for that robot walking on glass
walls and ceilings using adhesive feet made from a biologically
inspired material (Daltorio ef al 2005b). The patterned surface
was successfully applied to feet of the 120 g wall-climbing
robot (figure 9). The ability to transition between orthogonal
surfaces, steer and overcome small obstacles is feasible for a
robot with such compliant adhesives.

Further robotic developments

A lighter robot would be more stable on the substrate, allowing
more complex maneuvers. In addition, a lighter robot may not
need a tail, which can get in the way of transitions. With
a body flexion joint, the robot may even be able to make
transitions around more difficult external angles (Ritzmann
et al 2004). Mounting the axles farther away from the wall
than the center of mass, would allow more space for longer
spokes and feet without losing stability. The addition of an
anisotropic frictional material on the tail of the robot, where

the normal forces are compressive, may reduce the tendency to
slip down the substrate. Whereas the current robot only walks
on a clean smooth glass, a practical climbing robot would
be able to traverse rougher and dirty surfaces as well. This
will require the adhesives to be even more resistant to dust
and oils. Additionally, alternative attachment mechanisms,
such as insect-like claws or spines, could be added to take the
advantage of surface roughness.

Other potential applications for a bioinspired tape

Additionally, a tape can be used for multiple adhering of
objects to glass surfaces (novel fastening systems) or as a
protective tape for sensitive glass surfaces of optical quality.
Another area of potential application is the manipulation
of materials with smooth surfaces such as lenses, CDs,
DVDs. Thus, the tape represents a considerable step toward
the development of industrial dry adhesives based on the
combination of several principles inspired by biology.

Where to go?

For material scientists, results obtained on biological objects
emphasize the necessity to couple the inherent material
properties of the adhering material with the geometry of the
contact (Spolenak et al 2005a, 2005b). The efficiency of
the natural systems cannot, of course, be copied directly, but
some of the concepts can be translated to the materials” world
to design surfaces with particular properties and functions we
observed in our long-term biological studies. Some functional
principles, at which reversible biological adhesive systems
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operate, are given in figure 10. These principles relate to
the dimension and density of surface structures, their aspect
ratio and slope. The hierarchical design of surface features
may enhance adaptability to real surfaces, which normally
have fractal roughness. The shape of the contact may aid in
tuning pull-off forces at the level of single contact elements.
By changing the shape, one may adjust adhesive properties of
the material to particular application. An asymmetrical shape
of a single contact element in combination with the proper
movements may provide the way to switchable adhesives.
Additional structured coatings and the use of gradient materials
together with a properly selected aspect ratio, density and
elastic modulus may prevent the condensation of structures.
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